Prodomain-dependent tissue targeting of an ADAMTS protease controls cell migration in Caenorhabditis elegans.
نویسندگان
چکیده
Members of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted proteins play important roles in animal development and pathogenesis. However, the lack of in vivo models has hampered elucidation of the mechanisms by which these enzymes are recruited to specific target tissues and the timing of their activation during development. Using transgenic worms and primary cell cultures, here we show that MIG-17, an ADAMTS family protein required for gonadal leader cell migration in Caenorhabditis elegans, is recruited to the gonadal basement membrane in a prodomain-dependent manner. The activation of MIG-17 to control leader cell migration requires prodomain removal, which is suggested to occur autocatalytically in vitro. Although the prodomains of ADAMTS proteases have been implicated in maintaining enzymatic latency, polypeptide folding and secretion, our findings demonstrate that the prodomain has an unexpected function in tissue-specific targeting of MIG-17; this prodomain targeting function may be shared by other ADAMTSs including those in vertebrates.
منابع مشابه
Organ Length Control by an ADAMTS Extracellular Protease in Caenorhabditis elegans.
MIG-17, a secreted protease of the ADAMTS family, acts in the directed migration of gonadal distal tip cells (DTCs) through regulation of the gonadal basement membrane in Caenorhabditis elegans Here, we show that MIG-17 is also required for the control of pharynx elongation during animal growth. We found that the pharynx was elongated in mig-17 mutants compared with wild type. MIG-17 localized ...
متن کاملThe novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans.
The migration of Caenorhabditis elegans gonadal distal tip cells (DTCs) offers an excellent model to study the migration of epithelial tubes in organogenesis. mig-18 mutants cause meandering or wandering migration of DTCs during gonad formation, which is very similar to that observed in animals with mutations in mig-17, which encodes a secreted metalloprotease of the ADAMTS (a disintegrin and m...
متن کاملTissue Architecture in the C. elegans Gonad Depends on Interactions among Fibulin-1, Type IV collagen and the ADAMTS Extracellular Protease
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is direc...
متن کاملControl of cell migration during Caenorhabditis elegans development.
In Caenorhabditis elegans, cell migration is guided by localized cues, including molecules such as EGL-17/FGF and UNC-6/netrin. These external cues are linked to an intracellular response to migrate, at least in part, by CED-5, a homolog of DOCK180/MBC, and MIG-2, a Rac-like GTPase. In addition, metalloproteases are required for a cell migration that controls organ shape.
متن کاملGenetics of extracellular matrix remodeling during organ growth using the Caenorhabditis elegans pharynx model.
The organs of animal embryos are typically covered with an extracellular matrix (ECM) that must be carefully remodeled as these organs enlarge during post-embryonic growth; otherwise, their shape and functions may be compromised. We previously described the twisting of the Caenorhabditis elegans pharynx (here called the Twp phenotype) as a quantitative mutant phenotype that worsens as that orga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2007